Communications & Power Industries - Microwave Power Module

The PTXM1000 Microwave Power Module integrates a "Super Mini" Travelling Wave Tube (TWT), lineariser and an optimised high density switch mode power supply to produce a single "drop-in" microwave amplifier block for any CW application requiring the highest power, linear performance.

Integration of the TWT and its high voltage power supply simplifies the system designer's task by eliminating the TWT interconnect (and their associated safety and reliability hazards). Integration further reduces the overall system size, simplifying the installation task.

The MPM is factory adjusted to optimise the TWT performance. No user adjustments are required, simplifying replacement and reducing replacement times in the field.

The MPM can be configured to incorporate a variety of TWT models, allowing the user to specify frequency and peak power parameters.

The PTXM1000 features a Ku band (13.75 GHz to 14.5 GHz) TWT capable of providing 110 W across the band. A low gain dual collector TWT is incorporated together with a low noise lineariser to provide optimum noise performance and maximum undistorted power capability.

A control interface is incorporated which allows remote operation and status monitoring, providing diagnostic outputs for BIT purposes.

The PTXM1000 Microwave Power Module integrates a "Super Mini" Travelling Wave Tube (TWT)

FEATURES:

 In addition to very small size and light weight, the unit features excellent thermal management. The high electrical efficiency of the unit ensures a highly reliable capability with minimum cooling over a wide operating temperature range.

BENEFITS:

 By virtue of the fully encapsulated high voltage section, the unit can operate at high altitudes and high humidity and will survive high levels of vibration and shock for operation in the harshest military environments

APPLICATIONS:

 These Microwave Power Modules are fully tested including temperature cycling to agreed acceptance test procedures before shipment, meeting the demands of high performance Ku band communications systems.high performance Radar and ECM systems.

RF Characteristics

Typical Operating Characteristics for the MPM incorporating a 13.75 to 14.5 GHz, 100 W TWT $^{\rm Note \ 1.}$

Frequency Range	13.75 to 14.5 GHz
RF Output Power	110 W (+50.4 dBm) min
(Saturated)	(14.0 to 14.5 GHz)
Duty Cycle 10	00% (CW operation only)
Small Signal Gain	53 dB Nom +/- 3 dB
Small Signal Gain Stability	y +/-2.0 dB max over
24 hours and over temperature range	
Small Signal Gain Variatio	n +/-1.5 dB over
	500 MHz bandwidth
RF Input Power	0 dBm typical
(for saturation)	
Second Harmonic at	-15 dBc Max with
saturation	matched load
Noise Power Density	-32 dBm/MHz max
(Beam On)	
Maximum spurious PM	-60 dBc max
	(Excluding +/-1MHz of
	carrier frequency)
Single sideband CW equiv	valent Phase Noise
Power Density	
-40 dBc	/Hz @ 10 Hz from carrier
-60 dBc/Hz @100 Hz from carrier	
-80 dBc/Hz N	Max at 1 kHz from carrier

-90 dBc/Hz Max at 10 kHz from carrier

-100 dBc/Hz Max at >100 kHz from carrier

Noise Figure	10 dB (typical)
Input VSWR	1.5:1 max

Output VSWR

3rd Order 2 Tone Intermodulation

-25 dBc max @ 2.5 dB back-off Note 2

AM/PM Conversion 5 °/ dB typical

Prime Power Requirements

Prime Power

270 V DC per MIL-STD-704F (±10% normal

operating range & abnormal voltage transient)

Power Consumption 455 W @ 100 W RF

Connectors

Primary Power Inpu	t Nicomatic: 322YL015D51
Connector	
Control and Monitoring Nicomati	
Connector	D221EP00D51-0003-3305+RF
RF Input Connector	SMA Female
RF Output Connecto	or TNC Female

Control and Monitoring

Control Inputs	HV On
	TWT Beam On
Status Outputs	Standby
	HV On
	Fault

Notes:

1 Other Characteristics are available to special order

2 Two equal tones spaced 10 MHz apart. MPM is fitted with a lineariser

Fault Protection

Extensive internal BIT incorporated to monitor most TWT parameters. MPM shuts down under fault conditions. TWT operating parameters can be monitored externally to aid fault location. An overtemperature trip is incorporated.

Fault Outputs	Overtemperature
	Summary Fault
TWT Monitor Outputs	Cathode Voltage
	Beam Current
	Helix Current
Heater Warm-Up	90 Seconds from
	power on
Automatic Restart	Auto-reset after fault is
	included (3 restarts) typical

Mechanical

Mechanical Outline	
	190 x 120 x 30 mm excluding
	fixings and connectors
Weight	1.7 kg max
Orientation	Any
Finish	Nickel plated
Markings/Labels	Type Number
	Model Number
	Serial Number
	Connector Ident
	Hazard Warning
Cooling Co	nduction via baseplate, +85 °C
	maximum temperature

Options (available on request)

Alternative prime power 28V, 115VAC 3-phase (plug-in or stand-alone converters) Block up converter (BUC) RF output assemblies

Environmental

LINIOIIIIEIItai	
Ambient Temperatur	re -50°C to +85°C
(operating)	
Ambient Temperatur	re -55°C to +100°C
(Non-operating)	
Baseplate Temperatu	ire 85°C maximum
(MPM)	(operating)
Altitude (Operating)	0 - 70,000 ft
Vibration	MIL-STD-810G 514.6
(Operational)	Category 13
Vibration	MIL-STD-810G 514.6
(Storage and transit)	Category 8 & 6
Shock	MIL-STD-810G 516.6
	Procedure I Functional shock
Acceleration	MIL-STD-810G Table 513.6-II
	(Aircraft operational)
	MIL-STD-810G Table 513.6-I
	(Aircraft structural)
Humidity (Operation	& Storage)
MIL-STD-810G Part c	one C-I, Constant high
humidity (B1)	
EMC Performance	
MIL-STD-461E – Req	uires external EMC filter

TMD Technologies Division tel: +44 (0)20 8573 5555 Swallowfield Way Hayes, Middlesex United Kingdom UB3 1DQ

email: wecare@tmd.co.uk web: www.cpii.com/tmd

For more detailed information, please refer to the corresponding technical description if one has been published, or contact CPI TMD Technologies. Specifications may change without notice as a result of additional data or product refinement. Please contact CPI TMD Technologies before using this information for system design.

TMDUK-SALE-9037 Issue 2 dated November 2014